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ABSTRACT 

An alternating direction implicit difference scheme is applied to the shallow water 
equations on a b-plane. Unconditional stability of the scheme is proved for the linearized 
equations. For each time step a number of nonlinear systems of algebraic equations 
must be solved. Different iteration methods for doing this are discussed, and a quasi- 
Newton’s method is developed, which can be used for arbitrarily large time steps. The 
scheme is tested numerically, and the different iteration methods are compared. 

1. INTRODUCTION 

When solving partial differential equations by explicit difference approximations, 
the time step is always restricted by a stability condition. In meteorological and 
oceanographic problems, one is often not interested in these short time steps 
because the discretization error in time is small compared to the discretization 
error in space. To avoid the stability condition, implicit schemes must be used, and 
some have been suggested and tested for this type of problem. 

Most of them are “partly” implicit, so that there is still a stability condition, 
but a weaker one than for fully explicit schemes. The scheme considered in this 
paper is an alternating direction fully implicit scheme, and was stated in [7] 
(formulated differently) for linear initial boundary value problems. 

It is applied to the shallow water equations, i.e., the primitive equations for an 
incompressible, inviscid fluid with a free surface. We will use the j3-plane approxi- 
mation on a rectangular domain. We will show that the method is unconditionally 
stable for the linearized equations. 
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Implicit schemes generally require more computation per time step than 
explicit ones. However, in many problems, as in meteorological applications, 
much computation which is independent of the particular type of difference scheme 
used, e.g., computing the forcing function, must be done for every time step. In 
these cases, the computing time required for obtaining the solution up to a certain 
time might depend more on the size of the time step than on the actual difference 
scheme chosen. 

The scheme considered in this paper requires the solution of a number of 
nonlinear systems of algebraic equations. We will show that using a quasi-Newton 
method for this will yield a reasonable computing time for the propaga- 
tion of the problem solution over a single time step, provided the solutions to the 
difference scheme equations are sufficiently smooth. Since the time step is deter- 
mined only by considerations of accuracy and not of stability, the elapsed time 
required for obtaining a solution over a given time interval may be considerably 
reduced. 

2. THE DIFFERENTIAL EQUATIONS AND THE DIFFERENCE SCHEME 

Define the vector function w = (u, 0, c@)~ = w(x, y, t) (wT denotes the transpose 
of a vector w), where u, v are the velocity components in the X- and y-direction 
respectively, and @ = 2 @, where h is the depth of the fluid and g is the 
acceleration of gravity. Then the equations, obtained from [5, Eqs. (2.1-3)], have 
the form 

aw _ = A(w) 2 + B(w) $ + C(Y)W, at 

where 

1, B = -E j2 +], 

f = j + /30, - D/2), f, ,d const. 

We assume periodic solutions in the x-direction; 

4% Y, t> = w(x + L Y, t). 
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Then, with the boundary conditions 

v(x, 0, t) = D(X, D, t) = 0, 

and initial condition w(x, y, 0) = C&K, y), the energy 

is independent of the time. (Note that no boundary conditions are necessary for 
ZJ and (b at y = 0, D.) 

We define a grid vector function 

w$ = w(j Ax, k Ay, n At), 

A’,Ax = L, IV, Ay = D; 

the difference operators 

(analogous for Do, , D,, , D-,) and the operators 

(2.1) 

Q$ = $ @(win,) Dk + Cf’) 

with 

k = 1, 2,..., JV, - I 
(2.2) 
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Then the difference scheme is defined by 

(I - P;;1/2) w$+~/~ = (I + QTk) wi” , (2.3a) 

(I - Qy;,+l) w$+l = (I + Py;l’2) w;;+lP. (2.3b) 

These equations do not apply to the v-component for k = 0, NV, but we use 
the conditions 

vjg = VjN, - - 0. (2.4) 

We assume throughout that h, = At/Ax, h, = AtlAy, h, , h, const. Adding the 
Eqs. (2.3a) and (2.3b) gives (cf. [9, p. 2121) 

wn+l - w” = 2pn+iw”+i + Qy,~n + Qn+lWn+l = 2(p”+; + Q”+“) w”+i + 0(&s), 

where in the last equality we have assumed sufficiently smooth functions. Therefore, 
it is clear that the scheme is of second-order accuracy at all inner points, since 
centered difference operators are used there. At the boundaries k = 0, N, , there 
is only first-order accuracy. However, we conjecture that the scheme has a conver- 
gence rate of second-order in the norm defined in [4, relation (2.7)]. 

3. STABILITY 

We consider the linearized case obtained by setting ~7~ = tiik , v;~ = Gj, , 
@;“k = &jjk in the matrices A, B. In order to avoid technicalities, 6, 6, 4 are 
assumed to be time independent. 

We define a Hilbert space H by considering all vector functions satisfying 
wjk = wj+N,,k ; vjO - viNy = 0. The inner product of two vectors 01, /3 and the 
norm are defined by 

where we have assumed real-valued vector functions, which is no restriction in 
this case. 

From well-known identities for difference operators, it is clear that if A is 
uniformly bounded and uniformly Lipschitz continuous in x and y, then 

At AD,, = $ (AD,, + D,,A) + @(At). (3.2) 
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(We will use throughout this paper the notation Q(dt) for operators E with 
11 E \I < const + dt, for vectors 01 with 11 LY 11 < const * dt, and for scalar functions 
&It) with 1 v(At)l < const + dt.) Analogous formulas are valid for D,, , D%., , 
and by defining 

DI, defmed by Eq. (2.2) it is clear that 

(3.3) 

(3.4) 

We will first show that the scheme (2.3) with Pjk , &jk substituted for Pjk , Qjk is 
stable. In [7] it is shown that if the relations 

(w, Fw) = 0 (3.5a) 

(WV CM = 0 (3.5b) 

are valid, the scheme is stable. The proof of this can be simply written as 

11 wn+1112 + ~@w"+l~~2 = (I w"+llp + I/QW"fl/l2 - 2(wn+l,&wn+l) 

= \I(1 - &) wn+l112 = \\(I + P) wn++ 112 = \/(I - p") W"fi 112 

= IU + !a w” II2 = II wn II2 + II &wn l12. 

& is a bounded operator, so this equafity is equivalent to stability. Equation (3.5a) 
is immediately clear, as A is symmetric and the operator D,, is antisymmetric in H: 

(w, (&I, + &J)w) = -U&mAw, 4 - W&w, 4 

= -(w,(ADoz + D,,A)w) = 0. 

To show Eq. (3.5b) we can without restriction assume Sir = 6j,N,-r = 0; the 
assumption of uniform Lipschitz-continuity means that the error introduced can 
be included in the O(dt) term in Eqs. (3.4). To make the proof of Eq. (3.5b) more 
readable, we will neglect the boundary k = N, , assuming for instance that 
wjNy = 0. Define 

Mz NV--l 
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j=l 

= - 4(W, Qw) = 0. 

To show stability for the original scheme (2.3), we first note that it can be written 
(omitting subscripts) 

(Z - Z’)(Z - Q) wn+l = (Z + P)(Z + Q) wn. (3.6) 

The relations (3.5a, b) show that the inverse operators (Z f &l, (Z I-t &)-’ exist 
and are bounded, therefore Eq. (3.6) can be written 

(1 - w - m + ww) Wn+l = (Z + P)(Z + &)(I + O(dt)) wn, 
and we have 

Wn+l = (Z + O(&))-l (Z - Q)-’ (I - F)-1 (Z + p”)(Z + &)(I + fqLlt)) wn. 

Accordingly, for small dt we have, with 11 w J/d = I/ w II2 + 11 &w lj2, 

II wn+l IId < (1 + ~(4) II wn 116 3 

and 

1) wn 116 G (1 + O(dt))n II w” Ilo < &enAtk* II w” llo . 

So, on any finite time interval (0, r), we finally obtain 

II wn II < & II w” II, 

and the stability is proved. 
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4. SOLVING THE SYSTEMS OF ALGEBRAIC EQUATIONS 

For each time step of the scheme, a number of nonlinear systems of algebraic 
equations have to be solved. If the systems are written in the form w = r(w), the 
simple iteration technique 

)$Am+1) = r()@)), m = 0, l,...,p (4.1) 

(hereafter called Glp) can be used. This method has the advantage of being fast in 
the sense that each iteration step can be carried out using a comparatively small 
number of arithmetic operations, and is easy to program. However, the convergence 
criterion imposes an upper limit on X, , X, , which in this case can be shown to be 
approximately four times as large as the Courant-Friedrich-Lewy limit for explicit 
schemes. Furthermore, the convergence may be slow, particularly if h, , h, are near 
the convergence limit and the solution to the differential equation varies rapidly 
with time. 

Also we have to take into consideration the results found by Gary [2] concerning 
the iterative solution of the system of equations arising from the Crank-Nicholson 
scheme for a linear equation. These results can easily be transferred to our scheme, 
and show that the number of iterations in each half time step has to be chosen 
from the sequence 3, 4, 7, 8, 11, 12 ,..., in order to avoid instability for the linear 
case. With these p-values, a certain order of dissipation is obtained. The method 
(4.1) was tested, and the results are discussed in Section 5. 

We will now describe a quasi-Newton’s method, where we are able to do a rigo- 
rous analysis of the order of accuracy. 

No more than two variables are coupled to each other on the leftsides of Eqs. 
(2.3), and we will here describe how to solve for (zP+*, P+f) from the first and 
third equation of (2.3a). The equations are written in the form 

where 

g(4 = 0, (4.2) 

(the n- and k-indices are omitted). The original Newton’s method, described e.g. 
in [6, Chap. 31, is given by 

&n+l) = &n) - J-l(a'"')g(a'",), (4.3) 

where the superscript denotes iteration index, and J is the Jacobian 
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4 Hl -Hi 

--Hz & Hz 
--Ho Do Ho 

0 

J = . . . 
. . . 

’ ““‘H- . . 
N, 1 

HN, -HN= DN, . 

(4.4) 

where 

Dj = 
2 (@pi+, - @i-l) 

uj-1) 

In order to solve for Pg, J is decomposed into J = LU, (see e.g. [6, Sec. 2.3.31) 
where L, U have the forms 

(the squares and triangles mean (2 x 2)-matrices). 
J-k is then computed by backsubstitution, i.e. z is first solved for from Lz = g, 

and J-lg from U(J-lg) = z. The quasi-Newton’s method now means that the LU 
decomposition is done only every M-th time step, where M is a fixed integer. Since 
the backsubstitution is a fast operation, the scheme will be efficient, provided the 
number of iterations is small. 

To check the order of accuracy we assume throughout that the solutions are 
sufficiently smooth. If our starting approximation CL(O) is taken to be the values 
computed at the previous time step, we then have 

(1 5 - a(O) I/ = U(Llt), (4.5) 

where g(t) = 0. (In this section j( (1 implies summation only over j.) 
The iteration formula is 

&n+l) = &d - y-yew) g(@), (4.6) 
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where 

p = J(cP’) + @(At). (4.7) 

Equation (4.7) is true if M is any fixed number and if we consider the limit process 
dt + 0. However, from a practical point of view, it is useful only if M is a relatively 
small number. A Taylor expansion gives, when taking Eq. (4.5) into account, 

0 = g(@ = g(a’0’) + J(a’“‘)([ - c&O’) + O(At2). (4.8) 

Assuming that f-l exists and is uniformly bounded when dt -+ 0, we can multiply 
Eq. (4.8) from the left by J-l, and obtain, taking Eqs. (4.5), (4.6), (4.7) into account, 

0 = pg(a(o’) + 5 - #’ + y-‘qop) = a(O) - (Y(l) + I$ - OF’ + O(At2). 

Accordingly, 

I/ E - a(l) 11 = O(AP), 

and in general 

/I 5 - CP’ 11 = O(At”+l). (4.9) 

For Eq. (4.9) to be valid, we must show 

II 9-l II d K K independent of d t, d t + 0. 

The representation (4.4) shows that 

where E is an antisymmetric matrix. The eigenvalues K~ of I + E have the form 

Kj = 1 + i)Jj, yi real, 

with 

1 Kj I2 = 1 + yi2, 

and we have for At < some const 

II 1-l ll d ll(I + E)-l II + @(At) = (mjn I ~5 I)-’ + Wt) < 1. 

This shows that Eq. (4.9) is valid, and also that the inversion of g is a very well 
conditioned problem. 
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When ZP+*, @+* are known, on+’ 2 can be determined in the same way, except 
that Dj , Hj in Eq. (4.4) are now scalars. We solve for wnfl in exactly the same way, 
except that u and u are interchanged and the “extra lines and columns” in L and 
U respectively do not appear because the boundary conditions are not periodic in 
the y-direction. 

Equation (4.9) shows that two iterations give sufficient accuracy, and we call 
this method QN2. However, if we obtain CL co) by doing linear extrapolation in time 
using the solutions at the two latest known times levels, we have 11 ,!j - C&O) I/ = 
O(LIP). It is then immediately clear that 1) .$ - 01(l) // = B@t3), which means that 
one iteration is enough. (This method will be called QNEXI.) 

As the exact solution of the difference scheme is not obtained in either case, there 
could be a slight growth in the solution. To investigate this growth for QN2, we 
consider the amplification factor p for the scalar case and only one space dimension, 
i.e., for the equation 

(1 - aD,) wnfl = (1 + aD,) w”. (4.10) 

After Fourier transformation, f-l corresponds to (1 - i()c/2)ri sin CO)-1, where 
I a - d I = da = @(At). After two iterations we have 

p = ( 1 - ib^ + 2ib - (1 - ib) 1 + ( +$) + 1 + ib)/(l - is), 

where 

b = x a sin w 
2 y 

6 = i? d sin w 
2 . 

After some calculation we obtain 

IE.L12= 
1 + 262 + 64 - 4J2(b - 6)” + 4(b - 6” < 1 

1 + 262 + J4 
9 (4.11) 

where we have assumed I da / < I ri I. Further, Eq. (4.11) shows that even if 
1 B 1 < 1 da / the growth of the solution is very small, for in that case I p ( < 
1 + O(dt4). 

The corresponding investigation for the QNEXl method was not carried out, 
because it has to be done for two space dimensions. However, we know that 
I p / = 1 + B(dt) in this case. If the solution is wanted over a very long time inter- 
val, this growth could be eliminated by adding a dissipation term without changing 
the accuracy of the scheme. 

To determine the efficiency of the scheme as applied to the equations treated in 
this paper, an operation count is useful. 
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For all three methods, the number of operations per full time step is KN,N,, 
where K depends on the method. 

We have for our three methods, 

KGI, = 38 +p'22, (4.12a) 

K QNEXl = 115 + 1521~~ (4.12b) 

K QN2 = 210 t 152/M, (4.12c) 

where p is the number of iterations for the GI method, and M is the number of 
time steps between the LU decompositions. Therefore, with the choice p = 3 and 
M = 12 (used in numerical experiments), we have 

K GIs = 104, 

K QNEXl = 128, 

K QN2 = 223. 

As a comparison, we have for the simplest formulation of the leapfrog scheme 
without any averaging in space KLEAPFRoG = 42. 

5. NUMERICAL REBULTS 

The purpose of this section is primarily to investigate the practical applicability 
of the arguments in Section 4. 

The program was run on the CDC 6600 computer at the Computing Facility of 
the National Center for Atmospheric Research. We always used the initial function 
used by Grammeltvedt [3, initial condition I] and Williamson [IO], i.e., the height 
field 

h(x, u) = H, + H1 tanh ( ‘(‘&- ‘) ) + H, sech2 ( “O’i- ‘) ) sin (q) 

and geostrophic velocity fields, i.e. u = -(g/f) ah/+, u = (g/f) ah/ax. Constants 
used were L = 4400 km, D = 6000 km,f = 1O-4 se&, /3 = 1.5 x IO-l1 set-l m-l, 
g = 10 m set-*, H, = 2000 m, HI = 220 m, H2 = 133 m. 

The scheme was run initially with the resolution dx = dy = 200 km, and 
dt = 1800 set, which means that h was approximately 3 times larger than the 
C-F-L limit for explicit schemes for this problem. Figure 1 shows the height field as 
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INITIAL HEIGHT FIELD 

~““““““‘“““““““~ 

G13 

G17 

QN2, MaI2 GI 11 

FIG. 1. The initial height field, and the height field after two days for the different methods; 
At = 1800sec. 

a result of QNEXl, QN2 (A4 = 12), and G13, G17, Gill after 2 days. We chose 
this point of time because the true solution of the scheme, i.e. the one obtained 
after a large number of iterations, has a little wrinkle on the 2200 contour, which 
is a good test of the convergence properties of the iteration methods. A visual 
inspection shows that QNEXl and QN2 give equal results, while the GI method 
needs 11 iterations to yield a comparable solution. However, the smooth part of 
the solution is accurate after three iterations, as was true in all the experiments. 

Figure 2 shows QNEXI, QN2, and QN3 run with dt = 3600 set, M = 6 
(X then exceeds the convergence limit for the GI method). Here we can discern a 
small discrepancy between QNEXI and QN2 in the “eastern” parts of the 2200 
contours. 
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QN3,M=6 ’ 
L”““““““““““““‘li 

FIG. 2. The height field after two days for the QN methods; M = 6, At = 3600 sec. 

The error between the approximate and the true solution of the scheme is shown 
in Table I for the different methods. The true solution is represented by WQN~ , 

and E is defined by or = wr - WQN, , where 1 stands for any of the iteration methods. 
The norm used is the one defined by Eqs. (3.1). 

TABLE I 

II EI II/II WQN~ II, t = 2 days 

Method 

G13 
G17 
Gil 1 

QNEXl 
QN2 

At = 1800sec At = 3600~~ 
. ..___- 

1.3 x 10-a - 
2.9 x 1OP - 
7.5 x 10-S - 
5.6 x lo-+ 1.4 x 10-a 
6.4 x lo-’ 4.9 x 10-G 

We believe that the error for both QN methods is much less than the difference 
between the true solution to the difference scheme and the solution to the differential 
equation. 
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Some long runs were also made. The solutions always “blew up” after approxi- 
mately 18 days, regardless of the iteration technique, which means that the 
“explosion” was caused by nonlinear instabilities in the scheme. We do not consider 
this property of the scheme as a significant disadvantage, since in long time integra- 
tions of meteorological and oceanographic problems there is always some kind 
of dissipation in the system. 

As noted in Section 4, the Glp-iteration method automatically enters dissipation 
into the scheme for p = 3,4,7, 8, II,... . For p = 3, which yields dissipation of 
fourth order, the “explosion” mentioned above does not occur (see Fig. 3). 

A smoothing of the solutions, using the QN method, can be achieved in various 
ways. We added the dissipation term EAt3 D+21D--yw;k to the rightside of Eq. (2.3a), 
and the term l At3 D+zD-zw$+i to the rightside of Eq. (2.3b). The result, with 
E = 0.015, is shown in Fig. 3, together with the results of the other methods. 
(Ax = Ay = 5 x 105 m always.) We believe, though, that a better way to handle 
the nonlinear instabilities is to use a nonlinear eddy viscosity term as described 
in [I] and [8]. 

‘ IDAYS) 

FIG. 3. Total energy for the different methods, Ax = Ay = 5 x 106, At = 3600 sec. M = 12 
for QN methods; At = 1800 for GI methods. 

The following table shows the run time in seconds per full time step with 
Ax = Ay = 2 x IO5 m for the different iteration methods used. 

TABLE II 

G13 0.16 
QNEXI, M = 12 0.43 
QNEXI, M = 6 0.49 
QN2, M = 12 0.74 
QN2,M= 6 0.80 
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6. CONCLUSIONS 

The scheme described in this paper is unconditionally stable for the linearized 
case; hence only the desired discretization error governs the selection of the time- 
step when the quasi-Newton method is used to solve the algebraic equations. This 
advantage becomes more evident when the equations are applied on the globe: 
we avoid the severe restriction on the time step for conditionally stable schemes 
arising from the converging grid near the poles. 

Disadvantages of the QN methods (with M > 1) are that extra storage is required 
for the L, U matrices and for the function values at the previous time level for 
QNEXl, and that the programming becomes comparatively complicated, as is 
reflected in Table 11 where the run times do not compare to the operation count 
in Section 4. 

For the initial function and the X values used in the numerical experiments, the 
error in the solution of the difference equations by QNEXI appears to be less than 
the discretization error; hence it is probably satisfactory in most cases. 

If we are interested in moderate X values, the GI method can be used for solving 
the algebraic equations. It is simple to program and is fast if the number of itera- 
tions can be kept small. However, a rigorous analysis of the accuracy is more diffi- 
cult in this case, and we cannot expect the high wave number components to be 
well represented. Nevertheless, this might be an advantage if one is interested in 
long time integrations, since dissipation is automatically built into the scheme. 
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